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Abstract. Linear density perturbation equation for general relativistic cosmologies using 
the homogeneous isotropic Robertson-Walker metric and the anisotropic Bianchi-I metric 
for the unperturbed model has been derived in a simple and rather general manner. The 
method has then been applied to consideration of the fate of density perturbation in the 
Brans-Dicke model of the universe. Two coupled differential equations connecting varia- 
tions in the density p and the scalar field 4 of the model have been obtained. An 
approximate solution has been sought and a power law growth of the fluctuation in density, 
Sp, with time has been obtained. 

1. Introduction 

In this paper a simplified, general way of deducing the linear density perturbation 
equations in general relativisitic cosmologies is proposed, using both the isotropic, 
homogeneous Robertson-Walker metric and the anisotropic, homogeneous Bianchi-I 
metric for the unperturbed universe. A discussion of the fate of density perturbation in 
Brans-Dicke cosmology follows. 

2. Linear density perturbation equation in general relativistic universes 

We first consider the case where the unperturbed universe is homogeneous and 
isotropic with the line element 

ds = dt2 - R’(t)2 , (dr2+r2 d02+r2sin20 dq52) 
( l+akr  ) 

where units have been chosen such that the velocity of light c = 1, k = f 1,0, and R,(t) is 
the cosmic scale factor, the subscript 0 on R referring to the unperturbed value. 

In the perturbed universe we assume that there is still streamline flow so that we can 
introduce a co-moving system of reference in which the line element can be written as 

d s2=dr2+2g i0d t  dx’+glk dx‘ dxk, (2.2) 
where the goi terms make allowance for the presence of vorticity and/or a translational 
velocity relative to the frame of isotropy of the unperturbed universe as well as for the 
non-geodesic nature of the world lines. (In our discussion Latin indices will run from 1 
to 3, while Greek indices will run from 0 to 3, the index zero corresponding to the time 
coordinate.) 
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The smallness of the perturbation may be taken to mean that each of the quantities 

(the last form presupposes that the space coordinates x i  are orthogonal Cartesian) as 
well as their derivatives are all small so that only terms linear in them will be considered 
in our calculations. These quantities vanish in the unperturbed universe. 

With the perfect fluid energy-momentum tensor 

Tp” = ( p  + P ) U ~ V ”  -pg’”” 

the divergence relation T,”;, = 0 gives the following two equations: 
p = - ( p  +p)O 

U“ = p,,(gc”” - U F U U ) / ( p  + P )  

where 0 = up;, is the expansion which has the value 3k0RG’ for the unperturbed 
universe. In the perturbed universe we set 0 = 3RR-’. R ,  so defined, will differ slightly 
from Ro. 

With the line element (2 .2 )  the above two equations give 

,3 = -3(p +p)RR-’  (2 .5 )  
and 

Now to study the fate of density perturbation we consider variation of the 
Raychaudhuri equation 

where U and w are the shear and vorticity scalars, respectively. In the unperturbed 
universe we have U = w = 0, and so w 2  and U’ can be neglected as terms of second order. 

Also we have, using (2 .4 ) ,  (2 .6)  and (2 .2) :  

where V2 is the Laplacian for the three-space metric 

d12 = g ik  dx’ dxk. 

Now, if we introduce the condensation parameter s by 

P = P o ( l + s )  

and assume a linear equation of state 

P = “ P  (a =constant) 

we have using (2 .5 )  

so = +/( 1 + a ) so = - i / ( l  + a )  

and also from (2 .8 )  

(2 .9 )  

(2 .10)  

(2 .11)  

(2 .12)  
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Thus variation of the Raychaudhuri equation gives, on using (2.9), (2.10), (2.11) and 
( 2 . m  

3cu(l+a) 
- ( g i o g i k G ) , k  -4rpoG(1  + 3 4 ( 1  +a)s=O. (2.13) R O  

i+2-S+aV2s+ 
R O  G Ro 

Again, (2.6) gives, on integration, 

(2.14) 

where the f i  are functions of space coordinates alone. The first term in goi is a gradient 
+,i and can be removed by an infinitesimal transformation t' = t + +(xi, t )  which would 
not change the form of the metric. The second term may give rise to vorticity and in 
(2.13) gives rise to a term: 

which has a time dependence of approximately t-3/2 for the radiation universe in which 
Ro - t'l2, and a zero contribution for the dust universe in which cy = 0. Locallyfi,k + f k , l  

may be made to vanish by a suitable transformation and in any case the term decreases 
rapidly with time. We shall therefore disregard this term in our subsequent discussion. 

We are, therefore, led to the equation 

R O  i+ 2-S +*V2s -4rGp0(l + 3 4 ( 1  +(Y)s = 0. 
R O  

(2.15) 

This is the well known linear density perturbation equation. It has been obtained 
previously by a number of authors-for example, Bonnor (1957), Silk and Brecher 
(1969) and Irvine (1965)-with somewhat less generality. The consequences of this 
equation have been studied extensively in the literature (Liang 1976) while non-linear 
perturbations have been studied by Field and Shepley (1968). We do not intend to 
recapitulate these results but make a few remarks for the case a = 0. In this case 
equation (2.15) becomes: 

Disregarding for a moment the term in S, the equation shows a monotonic increase of s 
but at a rate too slow to account for the formation of galaxies. The term in S is similar to 
a damping term and in an expanding universe (i.e., do/Ro is positive) would slow down 
still further this growth of s. These conclusions, to some extent, contradict the 
conjecture of Hawking (1966) that in a pressureless universe the fate of a condensation 
would depend critically on the curvature parameter. 

The problem of density perturbation in the Bianchi-IX and Bianchi-I universes has 
been studied by Hu and Regge (1972) and by Perko et a1 (1972) respectively. We 
content ourselves with deriving the linear density perturbation equation for the Bianchi 
type-I universe by the above method. In this case the line element for the background 
homogeneous universe is 

ds2 = dt2 - R:o(t) dX2 - Ri,(t) dy2 - R&,(t) dz2  (2.16) 
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(suffix 0 denoting unperturbed values) follows the same line of reasoning as in the 
previous case. Here 0 in (2.3) will be given, in the unperturbed universe, by 

2 1 0  d20 @30 

RIO R20 R30 
o = el0 + e20 + e30 = -+-+---. 

In the perturbed universe, for which the line element is again assumed to be of the form 
(2.2), 0 is put equal to el + O2 + O3 where Oi = Ri/Ri .  The Ri so defined will differ very 
little from the Rio. 

Here for the unperturbed model we have, to our order of approximation, 

w = o ,  3u2= 02-3(e1e2+e2e3+e3e1) (2.17) 

whereas the field equations 

give, specializing for the case of a dust universe, 

(2.18) 

From (2.18) and (2.3) with p = 0, we have 

with the integral 

p =4/(3t2+4At)  (2.19) 

where A is a constant of integration, and where the condition p + 00 as t + 0 has been 
used. 

Also from (2.17) and (2.18) it follows that 

3a2 = A2p2.  (2.20) 

Using (2.3), (2.171, (2.20) in the variation of the Raychaudhuri equation for the dust 
universe gives 

which gives, on using (2.19) 

i+ 5 (.’-”””) S - ($A ’p2 + 4 ~ G p ) s  = 0. 
3t 3 t+4A 

(2.21) 

(2.22) 

This equation has been deduced by Johri (1972) using the tetrad formalism. 
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3. Fate of density perturbation in Brans-Dicke cosmology 

We start our discussion of the fate of density perturbation in Brans-Dicke cosmology 
using the extended Raychaudhuri equation as given by Banerji (1974): 

R being the coupling constant between the tensor and scalar fields. 
The shear and vorticity terms are as before of the second order and left out of 

consideration in our order of approximation. In view of our discussions in §2, we 
obtain, for small density perturbation: 

-+- j -+-V2s  
l + a  l + a  Ro l + a  
S 2 do ff 

87r 2 + R  3 a ( l + R )  
)pos-q(mf 3+2R 

2R 2R * SQ (y) ++2s~- - -2 .~s~- -+s  - . 
4 4 4 (3.2) 

We now specialize to the case of the dust universe with p = 0. The above equation then 
becomes 

Again, using the following result of Brans-Dicke theory: 

4a;a = 8,T/(3 + 2R), 

and using the relation = R3, we have for the dust universe 

(3.4) 8 4  +-( 4 gzkgok&) + 3- do 134 . -9- do - 9--s4 do . SR + -4 3 SR = - 8TPO 
J-g , I  Ro Ro Ro RO 3+2Ckss. 

We now use the following simple model of the Brans-Dicke dust universe (Dicke 1962) 

(3.5) Ro = at 2(1 +0)/(30+4) = bt-6(1+0)/(30+4) 4 = ~ ~ - ( 3 0 + 2 ) / ( 3 0 + 4 )  

where a3b  = poRi and A = [87rpo,/(2R+3)]t~"+n'/'3n'4' ; poo being the average unper- 
turbed density at the time to. 

We then have from (3.3) and (3.5) 

s'+--j- 4(1+R) 1 167r(2+R)b 1 
3R+4 t (3R+4)(3+2R)A P s  

64 " t-3(0+2)/(30+4) 

(3fl+4)2A 
SQ - = -  t-2/(30+4) 

(352+4)A 

84 
- 327r(2 + R)b 16R ) t-(60+10)/(3n+4) 

((3R+4)2(3+2R)A2+(3R+4)3 (3.6) 
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and from (3.4) and (3.5) and in view of our discussion in 0 2 about gOi 

To solve for s one must solve the two coupled equations (3.6) and (3.7), but an exact 
solution seems quite formidable. Nevertheless we can attempt to find an approximate 
solution in the following manner. 

The last term on the right-hand side of equation (3.6) has the highest negative power 
of time and so in attempting an approximate solution we replace equation (3.6) by the 
following: 

j+- - S  - 4(1+R) 1 ,  167~(2+R)b 1 
3 R + 4  t (3R+4)(3+2R)A 7' 

SC. t-2/(3R+4) 8R t-3(n+2)/(3R+4) '' - (3R + 4I2A 
= -  

(30+4)A (3.8) 

Solving the coupled equations (3.7) and (3.8) (neglecting unity with respect to R in the 
coefficient of 84 in equation (3.7)) we have 

- s=o  (3.9) 
2(2R+33) - (8(1 +a) 167~(3 + 0 ) b  

3 R + 4  t (30+ 4)'- ( 3 0  +4)(3 + 2R)A 
J +  

which is of the form 

(3.10) 

with obvious substitutions. 
To solve equation (3.10) we try a solution s - t'. Thus 5 satisfies 

t 2 + ( P -  1) t -  Q = 0 (3.11) 

The two solutions of the quadratic equation (3.11) are 

(1 =i{-(P- 1) + [ ( P -  1)2+4Q]1'2} 

(2 = ;{ - ( P  - 1) - [ (P - 1) + 4 Q] "}. 
(3.12) 

We note that t1 > 0 and t2 < 0. Thus the condensation s has scope for growth in the 
dust-filled Brans-Dicke universe. But the power-law growths - tel is definitely too low 
a rate to account for galaxy formation so long as the initial perturbations are assumed to 
result from statistical fluctuation of density. 
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